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Algorithms that enable computers and robots to exhibit the 
same adaptive, flexible, and goal-directed behavior that we 

observe in people and animals.
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The Reinforcement Learning World
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Find the policy that maximizes the expected 
sum of rewards per trajectory.
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Why is interactive learning hard?

• Exploration vs. Exploitation 

• Should you keep trying actions that led to reward in the past or try new 
actions that might lead to even more reward in the future? 

• Example: when you go out to eat at a familiar restaurant, do you choose 
an option you enjoyed before or try something new to maybe find 
something even better?
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Why is interactive learning hard?
• Credit Assignment: 

• May take many actions before reward is received. Which ones were 
most important? 

• Example: you study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A? 

• Not trivial for people and animals either — done poorly leads to 
superstitious behavior!
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Reinforcement Learning in Practice

• Today, many AI systems learn from large, fixed datasets 
==> No interaction. 

• Offline Reinforcement Learning ==> learn from data 
produced by some other agent. 

• Sim2Real RL ==> train in a simulation then deploy in 
the real world.



My Research
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Find domains where RL has potential, identify challenges for the 
application of RL, and then find solutions to those challenges.

Meeting these challenges is a path towards computers and 
robots that can learn from interaction and reward.



Artificial Intelligence and Games
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Soccer as a Robotics Challenge
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“By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall 
win a soccer game, complying with the official rules of FIFA, against the winner of the most recent 
World Cup.” - Vision statement of the RoboCup Federation 



Reinforcement Learning for Robot Soccer

15With John Balis, Adam Labiosa, Ben Hong, Chen Li

1. Focus on behavior learning. 



Reinforcement Learning for Robot Soccer
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Train in simulator, deploy 
to the real robot.
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1. Research Challenge #1: Reinforcement learning algorithms must be 
able to learn from small amounts of interaction. 

2. Research Challenge #2: Can we predict when a learned behavior is 
safe enough to be deployed as part of a real system?

Challenging use-cases lead to fundamental research 
with wide-spread applicability
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Can we determine the expected performance of a learned policy 
before it is deployed and its actions have real world consequences? 

Our work: use historical data on actions and their effects in different 
states to evaluate an untested, new policy.
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Validating Learned Behaviors
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Driving requires reasoning about what you cannot see. 

Our work: use the behavior of other vehicles to inform us about what 
we cannot see.
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Autonomous Driving
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Dynamic tolling is being looked to as a means to reduce congestion 
in road networks. How to update tolls in real time to minimize 
congestion? 

Our work: use the behavior of other vehicles to inform us about what 
we cannot see.
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Tolling in Road Networks
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Algorithms that enable computers and robots to exhibit the 
same adaptive, flexible, and goal-directed behavior that we 

observe in people and animals.

Challenging use-cases lead to fundamental research 
with wide-spread applicability
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jphanna@cs.wisc.edu 
pages.cs.wisc.edu/~jphanna 

http://pages.cs.wisc.edu/~jphanna

